
The redesign of pkg install for pkgsrc

Jörg Sonnenberger

October 15, 2006

Pkgsrc is a framework for building third party software on a
variety of systems. It is the system of choice on DragonFly and
NetBSD.

Pkgsrc was originally derived from FreeBSD ports and many fea-
tures were added to that foundation. One central component is
“pkg install”, a collection of small programs to install and remove
packages and other related tasks. While it has been extended over
time, the original code base is still mostly present, together with a
number of limitations.

During Google’s Summer of Code 2006 program this component
was rewritten to better fulfill the needs of pkgsrc:

• Integrated archive handling.

• Full specifications of file formats and algorithms.

• Versioned, extensible meta data.

• Better integration of the install framework.

In the paper a comparison of the old approaches, the new solution
and the rationale, as well as the state of integration in pkgsrc and
of the conversion tools are given.

1 Introduction

The NetBSD Packages Collection or “pkgsrc” is a framework for building third
party software. Over the years it was extended to support not only NetBSD,
but a great variety of Operating Systems, ranging from Apple’s MacOS X to
Interix (Microsoft Services for Unix). Beside NetBSD, pkgsrc is the system of
choice on DragonFly.

1

The pkgsrc infrastructure is originally derived from FreeBSD’s ports frame-
work. Many features like the wrapper system and buildlink were added over
the years. One specific piece is “pkg install”, a collection of small programs
to install and remove packages and manage related tasks. While it has been
extended over time, the original code base is still mostly present.

Several problems have shown up with different severity, like

• use of external programs for the extraction of packages,

• use of a temporary directory during extraction, followed by moving/copy-
ing every file to the real location,

• missing documentation of file formats and precise syntax,

• redundancy of installation/deinstallation scripts,

• advanced updating facilities,

• incoherencies between packages built from source and those installed via
binary packages,

• difficult interaction with high-level tools.

The Google’s Summer of Code 2006 project provided an opportunity to
work on redesigning “pkg install” to fix most, if not all of the aforementioned
problems.

This paper discusses the results in comparison with the older approaches and
looks at the state of integration into the pkgsrc system.

2 Package metadata

2.1 Package patterns

The ability to match package names is needed in a number of situations. This
includes dependencies and conflicts, but also checks for security vulnerabilities.

In pkgsrc four different pattern types are currently used:

• Plain package names form exact matches.

• Dewey patterns like “gdm>=2.14<2.14.8” consist of the package base
name and relation operations. Version numbers are parsed according to
a complicated rule set modeled after common practice.

2

• Fnmatch patterns allow shell-like wildcards (“pear-5.0.[0-9]*”) and are
most commonly used to match any version of a package.

• Csh-style alternatives (“sun-{jre,jdk}<1.3.1.0.2”) are expanded to ele-
mentary patterns. If any of those matches, the alternative itself is match-
ing.

All four types have at least one major limitation. Plain matches are ac-
tively discouraged, since they can’t even deal with local patch versions (“estd-
0.5nb1”), making them almost useless.

Csh-style alternatives are needed to handle multiple packages providing com-
mon functionality like ghostscript-afpl and ghostscript-gnu.

Dewey patterns are the most expressive pattern, but can’t represent a match
to all versions. Matching e.g. all sub-versions of 4.3 is a problem as well, since
release candidates and patch level complicate the matter. Dewey pattern only
work well, when upper or lower bound are precise. The old implementation also
had some interesting validation bugs, e.g. “php<5>4” is matched by “php-4”.

Fnmatch patterns have the downside of matching more than intended. If
there’s ever a PHP module which name starts with a digit, the common “php-
[0-9]*” pattern for the PHP interpreter itself would match the PHP module as
well.

The situation is complicated further as multiple patterns are sometimes used
to reduce the number of matching packages. A dependency on PHP 4.x for
example introduces at least two patterns: “php-4.4.*” to match the API and
“php>=4.4.1nb3” to specify the ABI. The evaluation order by “pkg add” for
missing dependencies is critical. When the second pattern is evaluated first,
PHP 5 would be installed and the first pattern would be unsatisfiable as PHP
4 and PHP 5 conflict with each other.

To reduce this mess a way to unify the four styles was needed. One more de-
sirable criterion exists, which wasn’t satisfied by the existing rules. “pkg add”
has to choose a package, when more than one package matches a pattern. As
long as they have the same base name, a built-in rule is used (see PHP 4/5
earlier) which selects the highest available version. There’s no deterministic
rule for csh-style alternatives though. User interaction can be used to resolve
such conflicts, but they are often either undesirable or unavailable (e.g. au-
tomatic package installation during bulk builds). The order should therefore
follow explicitly from the pattern.

As most of the patterns in pkgsrc follow the Dewey-style it was useful to keep
it as base. The generalized version consists of a package base name and zero
or more operator/version pairs. Zero operators provide a full wildcard match
and each pair is processed in order as long as they match. This means the

3

incorrectly parsed pattern “php<5>4” now is valid and behaves as expected.
Beside the normal relational operators “<”, “<=” and so on, “˜” is introduced
as prefix match. “php˜4.4” matches “php-4.4”, but also “php-4.4pl1” and
“php-4.4rc1”. Finally multiple of this simple patterns can be joined using “|”
to form alternatives. Ordering of two matches is done by the first matching
alternative first and by ordering the versions themselves if they match the same
one.

While the given rules allow easy merging of two basic patterns, it gets more
complicated, when alternatives are involved. As this is not typically used in
pkgsrc (yet), the problems are left unresolved for now and will be revisited
later. A possible solution is to consider a package version as matching only if
it matches all requirements.

2.2 Dependencies, conflicts and compatibility

Packages often need other packages to function properly, e.g. because they
are dynamically linked against them or call a program from them. In a similar
way, some packages can’t work when installed at the same file. Historically two
packages has to be marked as conflicting, when the package content overlapped,
as the “pkg add’ program didn’t handle it as failure.

Another use case of patterns are explicit compatibility hints. In pkgsrc the
buildlink framework knows two kinds of dependencies – for ABI and API.
The latter are the classic way to describe that a certain (minimal) version is
needed by a package, e.g. because a new functionality was added in it. ABI
dependencies are more complicated though. As dependencies are normally
open-ended (all later versions match), it is hard to describe properly when the
interface is compatible.

To solve this a package can explicitly specify what it is compatible to. So
instead of requiring “libfoo>=1.0”, an exact match can be used by packages
depending on libfoo. The maintainer of libfoo is now responsible for specifying
what the oldest compatible version is. This can be used for ABIs as well as
module interfaces in scripting languages like Python. Support for maintaining
the compatibility list based on ELF “sonames” or libtool archives is planned.

2.3 Package lists

The heart of a package are the files within. The package list (plist for short)
contains all the files in the package, which are supposed to be “static”. For each
file a checksum is stored and it can be used to detect undesired modifications.
The old plist format also contains modifiers to remove directories on removal

4

and execute single line commands. The functionality to specify permissions or
ownership existed, but was never used.

The old plists had three major issues:

• It contains some package metadata, but not all. The ability to execute
commands was mentioned already. Another example is that dependencies
and conflicts are listed in the plist. The on-line description, the full
description, install and deinstall scripts, the package maintainer and all
the other information are stored separately though.

Checksums have been added as afterthought using special comments.

• Commands don’t belong into a plist, that’s what the install/deinstall
scripts are for. Firstly, it increases the number of places to audit and
secondly, it also provides a different environment.

• Handling of shared directories is flawed as it is often impossible or very
unpractical to factor out a base package to ”own” the shared directories.
In the past most common directories have been created using mtree from
a template and were considered sticky (e.g. never to be removed).

For the new “pkg install”, @exec and @unexec are no longer supported by
unanimous consent. All non-plist rated information have been moved and the
other statements have been made local to each entry. A field for checksums
has been added as well as a field to tag entries to belong to specific classes.
The latter allows special scripts to run on the tagged entries e.g. to register a
font with fontconfig or add a texinfo page to the local index.

The second important change is the classification of entries. Inspired by the
Solaris package tools, other types of plist entries beside simple files are support.

Configuration files are first-class entries. When the file does not exist at
install time, it is copied from a template or created as empty file (e.g. for
logfiles). On removal, the management tools can either keep it as is, remove it
on user request or archive it for later use.

Similar to configuration files, volatile files have a template. They are not
archived or even checked for modification, but instead assumed to be modified
by the package at vim. This is useful for fixed indices like texindex’s info/dir
file.

Beside files directories can be contained in the plist as well. As the new
“pkg add” creates them on demand and “pkg delete” removes them when no
other package is referring to them, this is seldom needed. It is needed when
empty directories should be part of a package or when special permissions are
required.

5

Two special kinds of directories are also supported. Configuration directories
can contain only configuration files and directories as entries and are a way to
mark a whole directory hierarchy as containing only configuration files. They
are supposed to be handled as whole (e.g. archived). Exclusive directories
place a directory under the sole control of a package. No further plist entries
are allowed and the system doesn’t care about the content. The package is
responsible for removing the content at deinstall time. This makes it possible
to properly handle e.g. shared-mime-info’s share/mime.

Last but not least are symbolic and hard links recorded. The former should
not change its target and the latter might be converted down to a symlink if
necessary, e.g. when target and plist entry are not on the same filesystem.

2.4 Essential and non-essential metadata

Some of the data attached to a package has been mentioned already – the
package name, the list of dependencies and conflicts, the plist. Other items
are:

• The prefix a package is installed to and which it is supposed to stay in
with some exceptions,

• How to reach the maintainer of the package.

• The OS version and architecture the package was built.

• The license(s) it can be distributed under.

• The short and long descriptions, both in English and local languages.

All this data can be classified as essential or as non-essential. The former
category describes what directly affects “pkg install” and the basic user expe-
rience. Having translated descriptions is nice to have, but the English version
will always be authoritative and required. Just because a field is essential
doesn’t mean that it has to be present though. A typical example is the license
field which will be missing for most packages, but is critical for determining
whether a package can be distributed.

The separation between both classes is useful as it reflects the need of cor-
rectly managing and preserving the meaning of a field. As the list of metadata
will change in the future, backwards-compatibility will be needed. At the very
least it must cover all the essential fields and those have be updated as easily
as possible. To achieve this, each field has strong validation rules, which are
relaxed for the non-essential metadata.

6

2.5 Package format

The old “pkg install” just compressed tar archives containing all files in the
plist and normally one file for each of short and long description, the plist,
install and deinstall script, size infos. The latter set is also the metadata kept
in the package database (typically /var/db/pkg or .pkg in the prefix).

For a typical installation this easily takes a few thousand inodes. To avoid
the associated overhead, a format to keep them in one file was needed which
doesn’t compromise the extensibility. Two generic markup languages were
considered, namely XML and YAML. Since white-space handling in XML is
awful and YAML is also much human-friendlier, it was preferred by the author.

The serialized package content uses a shallow hierarchy which emphasizes
the importance of the various fields. The package itself and the plist entries
are explicitly tagged and thereby also versioned. This allows the package tools
to easily detect and convert older versions when necessary.

Binary packages are still (compressed) tar archives. The content is different
though. In the top level directory, there’s an index file containing the serialized
package description (as above). This is also required to be first entry of the
archive. Signatures will be stored as second entry, but as no light-weight gpg
verifying exists and X.509 certificates don’t play nicely with the (current) setup
of pkgsrc bulk builds, this is not finalized yet. After the index file the normal
files from the plist are stored in plist order. The files are stored with the
relative path under a directory named like the package. All other plist entries
are synthesized during extraction.

Enforcing a strict order on the packages makes it possible to extract a tarball
with minimal buffering and read the content without having to process more
than the index size (up-rounded to compression blocks). The construct of using
a subdirectory for the actual file allows later bundling of multiple packages into
a single archive, with minimal changes.

3 The programming interface

The implementation of “pkg install” consists of a library core and small bind-
ings on top. The core consists of four major components: the pattern related
functions, the package-related functions, the plist-related functions and the
package database functions.

7

3.1 Pattern functions

The pattern API provide simple accessor functions for easy access in common
situations. Both matching a pattern against a package name and ordering two
package names with regard to a pattern are supported. The allocation and
freeing of resources are kept internal.

The convenience functions are wrappers for the full implementation. Parsing
of a package name or pattern is a separate task to allow later reuse. Functions
to extract to the base package name or the list of matched base package names
for a pattern are provided. Those are useful e.g. for a bulk build as they
can reduce the quadratic runtime in the number of packages and patterns to
linearly.

3.2 Package functions

The package functions deal with in-memory package description and related
functions. Functions to create one from scratch or destroy it with freeing all
associated resources are provided as well as functions to get or set the meta-
data. Multi-value fields can be read either using a temporary array or an
iterator interface.

The finished package description can be validated either for basic compliance
or for the full package conformance. Descriptions which pass the latter can be
serialized using a callback interface. In the same way package descriptions can
be read back and parsed. A function to create a binary package from a package
descriptions and the files relative to given prefix completes the interface.

Errors are classified depending on whether they are input-related or inter-
nal. For internal errors like failing memory allocations or violations of the
API contract, the program can provide a callback which is called with the
current package descriptions, a failure code and optional context-depending
arguments. The callback is expected to terminate the application, otherwise it
is abort(3)ed. For input-related and other ”soft” errors, a different concept is
used. The error callback has the same arguments, but can return a value to de-
cide whether or not the processing should continued. This is a ternary value–on
error the processing can continue as long as it makes sense to diagnose further
problems, but the initial error is sticky. Alternatively the processing will di-
rectly bail out. The callbacks are provided on package creation or parsing, it
is not yet intended to modify them.

8

3.3 Plist functions

The plist API allows the addition and removal of individual entries. The inter-
face is strongly typed and each type has independent accessor functions. The
implemented makes heavy use of the preprocessor to keep redundancy in code
minimal. Similiar to the generic package interface, the plist access is mostly
done using iterative callback interfaces.

3.4 Package database functions

The database functions are still in the progress of being revamped. The desired
interface has three components:

• Functions to query the database. This should be generic enough to work
with package repositories as well.

• Functions to regenerate all internal state like the hash databases of all
files and the forest of packages and their relationship.

• Functions to modify the database as set of add/remove operations.

The first category is rudimentary implemented by providing an iterator in-
terface over all packages. The requirement for generalization is important here
as the same functions to decide whether a dependency is installed can be used
to find the best match in a binary repository. Most query functions should
work on binary package repositories as well as the package database.

The second category is implemented, but has to be moved from the stan-
dalone command into the library.

The third category is the most challenging. Single add and remove operations
work, but impose a severe limitations. Updates of non-leaf packages would have
to either remove all depending packages or leave the database temporarily in
an inconsistent state. To solve this, complex updates should be done as sets
of add and remove operations, which are atomic from the point of the package
database.

The downside is that the logic for verifying whether all dependencies are
resolved, no conflicts are present and the plists of all to-be-installed packages
are non overlapping gets a lot more complicated. As the use of index databases
is still necessary for installations with multiple hundred packages, the usage of
memory to keep the changes in memory is increasing as well.

It is open whether it is possible and helpful to split such transactions into
minimal blocks, which keep the database in a consistent state. It will not help
when e.g. xorg-libs changes, but is useful for the generic “update-my-system”
case.

9

4 Integration and conversion

4.1 Staged installation

The first step for the integration of the new “pkg install” is the elimination of
direct installation into the prefix. This makes it much simpler to ensure that
all directories created are either requested by the administrator or handled by
the framework.

Another important desire is to ensure consistent permissions as many pack-
ages don’t use the pkgsrc INSTALL * variables, but random combinations of
cp, pax/tar and install.

Therefore the facilities to install into a subdirectory of the working direc-
tory were added. As pkgsrc already provided just-in-time su, it was desirable
to allow full user package builds. Many packages just use default ownership
for files and the aforementioned override directives can be used to provide the
functionality even in the old “pkg install”. Some care had to be applied for
packages which install setuid/setgid binaries as the access permissions are ex-
tracted by tar and the ownership is later changed by “pkg add”, removing the
setuid/setgid bits as side effect.

4.2 Pattern conversion

The need to convert old patterns to the new style is an independent effort.
Both for the integration and the conversion patterns have to be converted, but
it can mostly be done on demand.

As written in section 2.1, esp. fnmatch patterns are often not precise. A
perfect automatic conversion is therefore not possible, but the intent of most
patterns can be accurately represented.

The conversion mechanism is based on type-specific rules. Csh-alternative
style patterns are expanded, each expanded pattern is converted and the list
joined with “|”. Simple package names are converted by replacing the last
hyphen with “==”. Dewey patterns are unchanged as they are a subset of the
new grammar. The edge cases are working as humans would expect them, so
the change in functionality is justified.

The most difficult case is the conversion of fnmatch patterns. For those a
number of heuristics are used. The pattern is matched against regular ex-
pressions representing common use in pkgsrc. For example, when “ˆ(.*)-\[0-
9]*$” is matched, it means that the patterns applies to any version of the
captured first sub-expression. As such it is converted simply to the that sub-
expression. Other cases which are handled automatically are “php-4.4.[0-9]*”

10

and “php-4.4.*”, which are converted to “php 4.4¿=4.4”. “php-4.4nb*” are
“php-4.4nb[0-9]*” are converted to “php 4.4nb”.

The given rules can be used to convert all but 30 patterns used by packages
in the “pkgsrc-2006Q2” branch and the rest are all somewhat bogus special
cases. It is not clear, whether they will end as hard-coded special cases or are
left for human intervention.

4.3 The new pkg flavour

In preparation for better support of multiple packaging systems Johnny Lam
refactored the package installation and creation code over the last summer.
This dramatically simplifies the initial efforts needed for integrating a different
“pkg install” implementation. Using compatibility wrappers for “pkg info” and
“pkg admin”, the changes are concentrated to two places:

• mk/flavour/pkg or a copy thereof

• mk/pkginstall

The former code has to be modified to use the new calling conventions and
use individual arguments for each dependency instead of a space-separated list.

The latter code provides the install/deinstall script framework. Most of
the functionality has to conditionally tag corresponding items for the new
“pkg install’ instead of expanding the shell scripts directly. This will be done
incrementally to allow better testing.

As the interface of the package management commands is not finalized, the
implementation of this code is still a work-in-progress and not part of the pkgsrc
tree.

4.4 Converting existing packages and installations

The creating of package descriptions for testing a new implementation is tire-
some and with the implementation of “pkg create” a shell script for converting
existing packages was written. This script has been extended over time to stay
in sync with the feature set of “pkg create”.

The biggest missing item right now is the handling of old install scripts.
Those fall in one of two categories. Either they are created from the in-
stall/deinstall script framework or they are custom rules for a specific package.

The first class is relatively easy to handle as the scripts create individual
entries in the package tarball or package database. The metadata can be ex-
tracted from the bottom of each file to handle appropriately.

11

The second class is more involved as there are no fixed marker in the scripts to
annotate the beginning or ending of the common fragments (which are already
handled). A second problem is that the scripts work both as pre-installation
and post-installation scripts and the calling convention has to be emulated.
It is an open question how far and in which an automatic conversion can be
successful.

5 Conclusion

The redesign of “pkg install” allowed fixing many of the problems of the old
implementations. The installation of packages can be done in-place. The
toolchain itself is much more self-contained, typically not requiring external
programs, but for additional features. Building blocks for better high-level up-
date mechanisms are provided. The modular architecture will allow further im-
provements and extensions with minimal redundancy and in a straight-forward
fashion.

As side-effect of this work, pkgsrc itself has been improved in a number
of ways. During the development of the pattern conversion tools, many bogus
dependencies have been fixed. The staged installation has been desired for years
and allows catching up with OpenBSD’s ports system in that area. Beside the
ability to build packages entirely as normal user, it will allow pkgsrc to sub-
packages as well.

12

