
Introduction to Terraform/OpenTofu and their
packaging in pkgsrc

Leonardo Taccari
<leot@NetBSD.org>

The NetBSD Foundation

EuroBSDCon 2025 - NetBSD Summit
September 26th 2025

Zagreb, Croatia

1 / 46

Outline
Infrastructure as Code (IaC), Terraform and OpenTofu

Infrastructure as Code (IaC)
Terraform

Simple example: private S3 bucket
Module example: private S3 bucket

OpenTofu
Why packaging is important!

Terraform/OpenTofu in pkgsrc
Terraform packages in pkgsrc
Migration path from Terraform to OpenTofu
Testing Terraform to OpenTofu migration
Terraform configuration to forbid provider registries

Possible open questions

Conclusions

References

2 / 46

Infrastructure as Code (IaC), Terraform and OpenTofu

3 / 46

Infrastructure as Code (IaC)

The process of managing and provisioning an organiza-
tion’s IT infrastructure using machine-readable configura-
tion files, rather than employing physical hardware config-
uration or interactive configuration tools. 1

1From NIST SP 800-172.
4 / 46

Terraform

Terraform 2 is an open-source infrastructure as code
software tool that provides a consistent CLI workflow to
manage hundreds of cloud services. Terraform codifies
cloud APIs into declarative configuration files. 3

2From now on, at least for introduction, everything that we say about
Terraform is valid also for OpenTofu.

3From old Terraform homepage: https://www.terraform.io/.
5 / 46

https://www.terraform.io/

Terraform

▶ Infrastructure as Code (IaC) tool
▶ Declarative Language (HCL: HashiCorp Configuration

Language)
▶ Cloud-agnostic
▶ Thousands of providers and modules available
▶ Encourage infrastructure changes in two steps:

▶ planning phase
▶ deployment of resources

6 / 46

Terraform: how it works?

@ Terraform configuration files (.tf)

ý Terraform provider(s)

Å Provider(s) API

7 / 46

Terraform: glossary

provider plugin that supplies a collection of resources and data
sources for managing infrastructure with a particular
vendor

resource represents an actual piece of infrastructure
data source similar to resource but can only be used to read data

module collection of .tf files kept together in a directory
state map real world resources to configuration, keeping

track of metadata and to improve performance in
large infrastructures

8 / 46

Terraform: typical workflow

Terraform development workflow from Terraform in Depth by Robert
Hafner.

init initializes a new or existing Terraform working
directory by creating initial files, loading any remote
state, downloading providers and modules

plan generates a speculative execution plan, showing all
the actions (create, updates (in place), destroy)
Terraform will do

apply creates or updates infrastructure according to
Terraform configuration files

9 / 46

Terraform: flowchart of Terraform execution plan

Flowchart of Terraform execution plan from Terraform in Action by Scott
Winkler.

10 / 46

Simple example: private S3 bucket

terraform block defines the required Terraform version and
required providers:

terraform {
required_version = "~> 1.6"

required_providers {
aws = {

source = "hashicorp/aws"
version = "~> 5.0"

}
}

}

...continue...

11 / 46

Simple example: private S3 bucket (cont.)

Each provider should be configured. In this case we would like to
use the eu-south-1 (Milan) AWS region for all the resources that
we are managing:

...continued...

provider "aws" {
region = "eu-south-1"

}

...continue...

12 / 46

Simple example: private S3 bucket (cont.)

Via several resources - all exposed by the aws provider - we desire
a private S3 bucket:
...continued...

resource "aws_s3_bucket" "this" {
bucket = "simple-example"

tags = {
Name = "Simple Example Bucket"
Environment = "development"

}
}

resource "aws_s3_bucket_acl" "this" {
bucket = aws_s3_bucket.this.id
acl = "private"

}

resource "aws_s3_bucket_public_access_block" "this" {
bucket = aws_s3_bucket.this.id

block_public_acls = true
block_public_policy = true
ignore_public_acls = true
restrict_public_buckets = true

}

13 / 46

Simple example: private S3 bucket (init)
▶ This Terraform configuration file is saved in its own directory

simple-example as main.tf.
▶ If we move to that directory we can start the workflow

described above.
▶ Let’s start with init!

$ tofu init

Initializing the backend...

Initializing provider plugins...
- Finding hashicorp/aws versions matching "~> 5.0"...
- Installing hashicorp/aws v5.80.0...
- Installed hashicorp/aws v5.80.0 (unauthenticated)

[...]

OpenTofu has been successfully initialized!

You may now begin working with OpenTofu. Try running "tofu plan" to see
any changes that are required for your infrastructure. All OpenTofu commands
should now work.

If you ever set or change modules or backend configuration for OpenTofu,
rerun this command to reinitialize your working directory. If you forget, other
commands will detect it and remind you to do so if necessary.

14 / 46

Simple example: private S3 bucket (plan)

$ tofu plan

OpenTofu used the selected providers to generate the following
execution plan. Resource actions are indicated with the following
symbols:

+ create

OpenTofu will perform the following actions:

aws_s3_bucket.this will be created
+ resource "aws_s3_bucket" "this" {

+ acceleration_status = (known after apply)
+ acl = (known after apply)
+ arn = (known after apply)
+ bucket = "simple-example"
[...]

}

aws_s3_bucket_acl.this will be created
+ resource "aws_s3_bucket_acl" "this" {

+ acl = "private"
+ bucket = (known after apply)
+ id = (known after apply)

}

[...continue...]

15 / 46

Simple example: private S3 bucket (plan)

[...continued...]
aws_s3_bucket_public_access_block.this will be created
+ resource "aws_s3_bucket_public_access_block" "this" {

+ block_public_acls = true
+ block_public_policy = true
+ bucket = (known after apply)
+ id = (known after apply)
+ ignore_public_acls = true
+ restrict_public_buckets = true

}

Plan: 3 to add, 0 to change, 0 to destroy.

Note: You didn’t use the -out option to save this plan, so OpenTofu
can’t guarantee to take exactly these actions if you run "tofu apply"
now.

16 / 46

Simple example: private S3 bucket (apply)

$ tofu apply

OpenTofu used the selected providers to generate the following
execution plan. Resource actions are indicated with the following
symbols:

+ create

OpenTofu will perform the following actions:

[...same output of plan...]

Plan: 3 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
OpenTofu will perform the actions described above.
Only ’yes’ will be accepted to approve.

Enter a value: yes

aws_s3_bucket.this: Creating...
aws_s3_bucket.this: Creation complete after 2s [id=simple-example]
aws_s3_bucket_public_access_block.this: Creating...
aws_s3_bucket_acl.this: Creating...
aws_s3_bucket_acl.this: Creation complete after 0s [id=simple-example,private]
aws_s3_bucket_public_access_block.this: Creation complete after 0s [id=simple-example]

Apply complete! Resources: 3 added, 0 changed, 0 destroyed.

17 / 46

Module example: private S3 bucket
▶ In Terraform often we reuse reusable module like LEGO

building blocks
terraform {

required_version = "~> 1.6"

required_providers {
aws = {

source = "hashicorp/aws"
version = "~> 5.0"

}
}

}

provider "aws" {
region = "eu-central-1"

}

module "s3_bucket" {
source = "terraform-aws-modules/s3-bucket/aws"
version = "~> 4.0"

bucket = "module-example"
acl = "private"

tags = {
Name = "Module Example Bucket"
Environment = "development"

}
}

18 / 46

Module example: private S3 bucket (init)

$ tofu init

Initializing the backend...
Initializing modules...
Downloading registry.opentofu.org/terraform-aws-modules/s3-bucket/aws 4.2.2 for s3_bucket...
- s3_bucket in .terraform/modules/s3_bucket

Initializing provider plugins...
- Finding hashicorp/aws versions matching "~> 5.0, >= 5.70.0"...
- Installing hashicorp/aws v5.80.0...
- Installed hashicorp/aws v5.80.0 (unauthenticated)

OpenTofu has created a lock file .terraform.lock.hcl to record the provider
selections it made above. Include this file in your version control repository
so that OpenTofu can guarantee to make the same selections by default when
you run "tofu init" in the future.

OpenTofu has been successfully initialized!

You may now begin working with OpenTofu. Try running "tofu plan" to see
any changes that are required for your infrastructure. All OpenTofu commands
should now work.

If you ever set or change modules or backend configuration for OpenTofu,
rerun this command to reinitialize your working directory. If you forget, other
commands will detect it and remind you to do so if necessary.

19 / 46

Module example: private S3 bucket (plan)
$ tofu plan
module.s3_bucket.data.aws_canonical_user_id.this[0]: Reading...
module.s3_bucket.data.aws_caller_identity.current: Reading...
module.s3_bucket.data.aws_region.current: Reading...
module.s3_bucket.data.aws_partition.current: Reading...
module.s3_bucket.data.aws_partition.current: Read complete after 0s [id=aws]
module.s3_bucket.data.aws_region.current: Read complete after 0s [id=eu-central-1]
module.s3_bucket.data.aws_caller_identity.current: Read complete after 0s [id=378032484863]
module.s3_bucket.data.aws_canonical_user_id.this[0]: Read complete after 0s [id=88d0aeb4141d5d787d74abc1e53f0700fb592ae60973dd16553e3b29553174f9]

OpenTofu used the selected providers to generate the following execution plan. Resource actions are indicated with the following symbols:
+ create

OpenTofu will perform the following actions:

module.s3_bucket.aws_s3_bucket.this[0] will be created
+ resource "aws_s3_bucket" "this" {

+ acceleration_status = (known after apply)
+ acl = (known after apply)
+ arn = (known after apply)
+ bucket = "module-example"
[...]
+ tags = {

+ "Environment" = "development"
+ "Name" = "Module Example Bucket"

}
[...]

}

[...continue...]

20 / 46

Module example: private S3 bucket (plan)

[...continued...]

module.s3_bucket.aws_s3_bucket_acl.this[0] will be created
+ resource "aws_s3_bucket_acl" "this" {

+ acl = "private"
+ bucket = (known after apply)
+ id = (known after apply)

}

module.s3_bucket.aws_s3_bucket_public_access_block.this[0] will be created
+ resource "aws_s3_bucket_public_access_block" "this" {

+ block_public_acls = true
+ block_public_policy = true
+ bucket = (known after apply)
+ id = (known after apply)
+ ignore_public_acls = true
+ restrict_public_buckets = true

}

Plan: 3 to add, 0 to change, 0 to destroy.

--

21 / 46

OpenTofu

▶ On August 2023 HashiCorp changed license from Mozilla
Public License v2.0 to Business Source License v1.1

▶ Terraform v1.5.x was the latest version under MPL v2.0
▶ OpenTofu was forked from Terraform to keep its development

open-source

22 / 46

Why packaging is important!

After license change HashiCorp also changed terms of use of
Terraform Registry, the default service used to distribute providers
and modules, in particular under point ‘2. SERVICES CONTENT.’:

You may download providers, modules, policy libraries
and/or other Services or Content from this website solely
for use with, or in support of, HashiCorp Terraform.

▶ Services could disappear
▶ Packaging software in pkgsrc avoid such single point of failure
▶ (Both Terraform and Terraform providers has never been

pre-built by HashiCorp for NetBSD, so packaging them was
also the only way to use Terraform!)

23 / 46

Terraform/OpenTofu in pkgsrc

24 / 46

Terraform packages in pkgsrc I

▶ In main pkgsrc:
▶ net/terraform 0.12.31
▶ net/opentofu 1.6.2
▶ Several net/terraform-provider-* for net/terraform

25 / 46

Terraform packages in pkgsrc II

▶ In pkgsrc-wip:
▶ wip/terraform012 0.12.31
▶ wip/terraform013 0.13.7
▶ wip/terraform014 0.14.11
▶ wip/terraform015 0.15.5
▶ wip/terraform11 1.1.9
▶ wip/terraform13 1.3.10
▶ wip/terraform15 1.5.7 (last MPL v2.0 version)
▶ wip/opentofu 1.10.6
▶ Several wip/terraform-provider-* most of them for

Terraform >= 0.13 and OpenTofu
▶ wip/terraform/version.mk that defines the various

Terraform/OpenTofu versions (maybe we can get rid of it and
directly define them in corresponding packages?)

▶ wip/terraform/provider.mk used by
wip/terraform-provider-* to more easily package them

26 / 46

Terraform packages in pkgsrc III
▶ Terraform 0.12.x search for providers under ${PREFIX}/bin

out of the box
▶ Terraform 0.13.x and newer and OpenTofu are patched in

order to search for providers under
${PREFIX}/share/terraform/plugis

▶ wip/terraform/provider.mk’s
TERRAFORM_PROVIDER_LEGACY_INSTALL if defined add
symlinks under ${PREFIX}/bin so that the provider can be
used by Terraform 0.12.x too

▶ We can package multiple majors because providers always
contains a version number as part of the path, e.g.:
$ pkg_info -L terraform-provider-aws3
Information for terraform-provider-aws3-3.76.1:

Files:
/usr/pkg/bin/terraform-provider-aws_v3.76.1
/usr/pkg/share/terraform/plugins/registry.opentofu.org/hashicorp/aws/3.76.1/netbsd_amd64/

terraform-provider-aws
/usr/pkg/share/terraform/plugins/registry.terraform.io/hashicorp/aws/3.76.1/netbsd_amd64/

terraform-provider-aws

27 / 46

Migration path from Terraform to OpenTofu

▶ Packages in pkgsrc-wip are intended to be imported to pkgsrc
▶ Permits to upgrade from Terraform 0.12.x to OpenTofu 1.10.6
▶ Shortest upgrade path is: Terraform 0.12 → Terraform 0.13

→ Terraform 0.14 → Terraform 1.x → OpenTofu 1.10.6 4

4Older OpenTofu documentation suggests to first update to OpenTofu 1.6.x
and then newer OpenTofu.

28 / 46

Testing Terraform to OpenTofu migration

▶ OK, we have packaged several Terraform-s, OpenTofu-s and
providers. . . How to test upgrades?

▶ Possibly without being worried to destroy resources and cloud
bills?

▶ net/py-moto moto_server to the rescue! (it can mock ups a
lot of AWS services, perfect for such purposes and
requirements!)

▶ Actual tests written with devel/py-cram so we have both
some notes and tests that checks expected output and exit
status

29 / 46

Testing Terraform to OpenTofu migration: checking binaries
and their versions I

Listing 1: requirements.t cram test
1 This test Terraform upgrades in pkgsrc and goes from Terraform 0.12 to
2 latest supported OpenTofu.
3
4 First we check that we have all needed Terraform versions ...
5
6 We set CHECKPOINT_DISABLE variable because otherwise Terraform phone
7 home and check if there are new versions available via
8 hashicorp/go -checkpoint:
9

10 $ export CHECKPOINT_DISABLE=yes
11
12 We check all Terraform versions:
13
14 $ terraform012 version
15 Terraform v0.12.* (glob)
16 $ terraform013 version
17 Terraform v0.13.* (glob)
18 $ terraform014 version
19 Terraform v0.14.* (glob)
20 $ terraform15 version
21 Terraform v1.5.* (glob)
22 on * (glob)
23
24 In pkgsrc -wip we have also packaged other intermediate versions.
25 Maybe we should test them too.

30 / 46

Testing Terraform to OpenTofu migration: checking binaries
and their versions II

26
27 We also check that we have OpenTofu installed:
28
29 $ tofu version
30 OpenTofu v1.* (glob)
31 on * (glob)

To run the tests:

$ cram requirements.t
.
Ran 1 tests, 0 skipped, 0 failed.

31 / 46

Testing Terraform to OpenTofu migration: checking
upgrade I

▶ We need some Terraform code to create several AWS resources
▶ AWS VPC ends up in needing around 30 resources, good

enough!

32 / 46

Testing Terraform to OpenTofu migration: checking
upgrade II

Listing 2: versions.tf
1 terraform {
2 required_version = ">= 0.12.31"
3
4 required_providers {
5 aws = ">= 3.28, <= 4"
6 }
7 }

Listing 3: main.tf
1 provider "aws" {
2 access_key = "test"
3 secret_key = "test"
4 region = "us-east -1"
5 skip_credentials_validation = true
6 skip_metadata_api_check = true
7 skip_requesting_account_id = true
8
9 endpoints {

10 ec2 = "http :// localhost :5000"
11 iam = "http :// localhost :5000"
12 }
13 }
14

33 / 46

Testing Terraform to OpenTofu migration: checking
upgrade III

15 module "vpc" {
16 source = "terraform -aws -modules/vpc/aws"
17 version = "3.7.0"
18
19 name = "testing -aws -vpc"
20 cidr = "10.0.0.0/16"
21
22 azs = ["us-east -1a", "us-east -1b", "us-east -1c"]
23 private_subnets = ["10.0.1.0/24" , "10.0.2.0/24" , "10.0.3.0/24"]
24 public_subnets = ["10.0.101.0/24" , "10.0.102.0/24" , "10.0.103.0/24"]
25
26 enable_dns_hostnames = true
27 enable_nat_gateway = true
28
29 tags = {
30 Terraform = "true"
31 }
32 }

34 / 46

Testing Terraform to OpenTofu migration: checking
upgrade IV

Listing 4: upgrades-aws-vpc.t cram test
1 This initialize and test the complete upgrade path from Terraform 0.12
2 to OpenTofu for aws -vpc module.
3 Requires that moto_server is running and listening to localhost :5000.
4
5 Copy the entire module to a temporary directory so we do not need to
6 worry and clean .terraform and terraform.tfstate files:
7
8 $ cp -r "${TESTDIR }/aws -vpc" "${CRAMTMP }/aws -vpc"
9 $ cd "${CRAMTMP }/aws -vpc"

10
11 Set CHECKPOINT_DISABLE environment variable so Terraform do not phone
12 home:
13
14 $ export CHECKPOINT_DISABLE=yes
15
16
17 Initialize the project with Terraform 0.12.x and create the resources:
18
19 $ terraform012 init >/dev/null
20 $ terraform012 plan -detailed -exitcode >/dev/null
21 [2]
22 $ terraform012 apply -auto -approve >/dev/null
23
24
25 Upgrade to Terraform 0.13.x by following

35 / 46

Testing Terraform to OpenTofu migration: checking
upgrade V
26 <https :// developer.hashicorp.com/terraform/language/v1.1.x/upgrade -guides

/0-13 >...
27
28 We ensure that there are no pending changes to do:
29
30 $ terraform012 plan -detailed -exitcode >/dev/null
31
32 Run 0.13 upgrade command so that provider requirements are rewritten to have
33 explicit source locations:
34
35 $ terraform013 0.13 upgrade -yes >/dev/null
36
37 Rewrite providers in the state too and re -init:
38
39 $ terraform013 state replace -provider -auto -approve -- -/aws registry.

terraform.io/hashicorp/aws >/dev/null
40 $ terraform013 state replace -provider -auto -approve -- -/random registry.

terraform.io/hashicorp/random >/dev/null
41 $ terraform013 init >/dev/null
42
43 Run apply to complete the upgrade
44
45 $ terraform013 apply -auto -approve >/dev/null
46
47
48 Upgrade to Terraform 0.14.x by following
49 <https :// developer.hashicorp.com/terraform/language/v1.1.x/upgrade -guides

/0-14 >...

36 / 46

Testing Terraform to OpenTofu migration: checking
upgrade VI
50
51 We ensure that there are no pending changes to do:
52
53 $ terraform013 plan -detailed -exitcode >/dev/null
54
55 Rewrite providers in the state too and re -init:
56
57 $ terraform014 init >/dev/null
58
59 Run apply to complete the upgrade
60
61 $ terraform014 apply -auto -approve >/dev/null
62
63
64 Upgrade to Terraform 1.5 by following
65 <https :// developer.hashicorp.com/terraform/language/v1.5/ upgrade -guides />...
66
67 We ensure that there are no pending changes to do:
68
69 $ terraform014 plan -detailed -exitcode >/dev/null
70
71 Rewrite providers in the state too and re -init:
72
73 $ terraform15 init >/dev/null
74
75 Run apply to complete the upgrade
76
77 $ terraform15 apply -auto -approve >/dev/null

37 / 46

Testing Terraform to OpenTofu migration: checking
upgrade VII

78
79
80 Upgrade to OpenTofu by following
81 <https :// opentofu.org/docs/intro/migration/migration -guide />...
82
83 We ensure that there are no pending changes to do:
84
85 $ terraform15 plan -detailed -exitcode >/dev/null
86
87 Re-init:
88
89 $ tofu init >/dev/null
90
91 Run apply to complete the upgrade:
92
93 $ tofu apply -auto -approve >/dev/null

▶ We need to run moto_server in a terminal
▶ In another terminal we can then run the tests:

$ cram upgrades-aws-vpc.t
.
Ran 1 tests, 0 skipped, 0 failed.

38 / 46

Terraform configuration to forbid provider registries

To only honor providers provided by terraform-provider-*
packages:

Listing 5: ˜/.terraformrc
1 provider_installation {
2 filesystem_mirror {
3 path = "/usr/pkg/share/terraform/plugins"
4 include = ["*/*/*"]
5 }
6 direct {
7 exclude = ["*/*/*"]
8 }
9 }

39 / 46

Possible open questions

▶ Should we also version OpenTofu? (e.g. opentofu16,
opentofu110)

▶ Is it okay that terraform-provider-* does not depends on
any Terraform/OpenTofu packages?

40 / 46

Thanks

▶ Particular thank you: <bsiegert> and <riastradh>

41 / 46

Conclusions

▶ We have introduced Infrastructure as Code (IaC), Terraform
and OpenTofu

▶ We reflected on why packaging is important
▶ We have seen how Terraform/OpenTofu and Terraform

providers are packaged in pkgsrc
▶ We have seen how a complete upgrade path from Terraform

0.12.31 to OpenTofu 1.10.6 works

42 / 46

References I

Ron Ross et al.
Enhanced security requirements for protecting controlled
unclassified information: A supplement to nist special publication
800-171.
Technical Report NIST Special Publication (SP) 800-172, National
Institute of Standards and Technology, Gaithersburg, MD, 2021.

HashiCorp.
Terraform.
https://www.terraform.io/, a.

OpenTofu.
Opentofu.
https://opentofu.org/.

43 / 46

https://www.terraform.io/
https://opentofu.org/

References II

Anton Babenko.
Terraform best practices.
https://www.terraform-best-practices.com/.

Steve Pulec.
Moto - mock aws services.
https://github.com/getmoto/moto.

bitheap.
Cram: It’s test time.
https://bitheap.org/cram/.

HashiCorp.
Terms of use - terraform registry.
https://registry.terraform.io/terms, b.

44 / 46

https://www.terraform-best-practices.com/
https://github.com/getmoto/moto
https://bitheap.org/cram/
https://registry.terraform.io/terms

References III

Robert Hafner.
Terraform in Depth - Infrastructure as Code with Terraform and
OpenTofu.
Manning Pubblications Co., 2025.
ISBN 9781633438002.

Yevgeniy Brikman.
Terraform: Up and Running - Writing Infrastructure as Code.
O’Reilly Media, 2022.
ISBN 9781098116743.

Scott Winkler.
Terraform in Action.
Manning Pubblications Co., 2021.
ISBN 9781617296895.

45 / 46

Questions?

46 / 46

	Infrastructure as Code (IaC), Terraform and OpenTofu
	Infrastructure as Code (IaC)
	Terraform
	OpenTofu
	Why packaging is important!

	Terraform/OpenTofu in pkgsrc
	Terraform packages in pkgsrc
	Migration path from Terraform to OpenTofu
	Testing Terraform to OpenTofu migration
	Terraform configuration to forbid provider registries

	Possible open questions
	Thanks
	Conclusions
	References
	Questions?

