
Current status of NetBSD
MP-safe network stack project

Ryota Ozaki and Kengo Nakahara
 (ozaki-r@ and knakahara@)

Internet Initiative Japan, Inc.

AsiaBSDCon 2016 NetBSD BoF
March 11 2016



Summary

• Background and goal
• What we’ve done
• What we’re working on
– Nexthop cache separation
– TX multi-queue support
– MP-safe gif(4)
– Performance measurements

• Roadmap
• Future plan



Background

• NetBSD’s network stack and network device 
drivers don’t run in parallel between CPUs
– Device drivers need to run with KERNEL_LOCK

– The network stack need softnet_lock



Goal

• Make (part of) the network stack and (some) 
device drivers MP-safe
– Make them runnable without the big locks

• Targets
– Layer 2/3 forwarding

• and some other components: gif, ipsec, ppp{oe}, etc.

– Intel NICs and some drivers for VMs
• wm(4), vioif(4), vmx(4) and some others

– amd64/i386 (and ARM?)



What we did

• Interrupt distribution / IRQ affinity
– intrctl(8) changes interrupt destination CPUs

• MSI/MSI-X support
– i386 and amd64

• Hardware multi-queue support of wm(4)
– Only RX queues for now

• MP-safe device drivers
– wm(4), vioif(4) and vmx(4)

• MP-safe bridge(4)
– Utilizing pserialize(9)

• Lots of ATF tests for the network stack



What we’ve done

• Lots of ATF tests
– rump-ifying rtadvd(8), gif(4)

• New L2 nexthop cache implementation
– Derived from FreeBSD
– For L2 nexthop cache separation from the routing table

• No hardware interrupt context in the network stack
– Make remaining parts run in softint
– Except for ieee80211 and bpf(4)

• Restructuring and refactoring
– No routing lookups in Layer 2
– Use time_uptime instead of time_second
– Kill open codes of manipulating rtentry#rt_refcnt
– Many other small tweaks…



Added ATF tests (1/2)
• net/arp/t_arp

– cache_expiration_10s, cache_expiration_5s, cache_overwriting, command, grap, 
link_activation, proxy_arp

• net/arp/t_dad
– dad_basic, dad_duplicated

• net/icmp/t_icmp_redirect
– icmp_redirect, icmp_redirect_timeout

• net/icmp/t_icmp6_redirect
– basic

• net/if/t_ifconf
– basic

• net/if/t_ifconfig
– create_destroy, options, parameters

• net/if_bridge/t_bridge
– basic, basic6, member_ip, member_ip6, rtable

• net/if_gif/t_gif
– basicipv{4,6}overipv{4,6}, ioctlipv{4,6}overipv{4,6}, recursiveipv{4,6}overipv{4,6}

• net/if_tap/t_tap
– create_destroy, stand_alone, bridged



Added ATF tests (2/2)
• net/ndp/t_dad

– dad_basic, dad_duplicated

• net/ndp/t_ndp
– cache_expiration, cache_overwriting, command, link_activation, neighborgcthresh

• net/ndp/t_ra
– basic

• net/net/t_forwarding
– basic, basic6, fastforward, fastforward6, misc

• net/net/t_ipaddress
– ipaddr_same_address, ipaddr_same_address6

• net/net/t_ipv6address
– linklocal, linklocal_ops

• net/net/t_ipv6_lifetime
– basic

• net/route/t_flags
– route_flags_{announce,blackhole,cloned,connected,default_gateway,icmp_redirect,lo, 

reject,static,xresolve}

• net/route/t_route
– non_subnet_gateway



What we’re now working on
• L2 nexthop cache separation from the routing table
• TX multi-queue

– wm(4) at first

• MP-safe IP forwarding
– Make data structures MP-safe

• The routing table, ipaddr, ifnet, etc.

• MP-safe gif(4)
• pwe(4) (L2TPv3) support
• Polling mode of network device drivers

– Like NAPI of Linux

• Performance measurements
– ipgen



Nexthop cache separation

• Summary
– Stop treating nexthop caches like ARP/NDP entries as part 

of the routing table
– Store nexthop caches in each interface
– Drop concept of cloning/cloned routes

• Motivation (for MP-safe work)
– Remove recursive operations to handle cloned routes
– Reduce contentions on the routing table

• ToDo
– Get it done with keeping backward compatibility AMAP

• It’s hard!



TX multi-queue support

• ToDo
– New TX API

• if_transmit instead of if_start
– Pass packets (mbuf) directly to a network device driver
– Not via if_snd queue (IFQ_ENQUEUE)

• Multiple (soft) queues on each driver
– Used if hardware is busy

– Consideration
• Which TX (hardware) queue we should use?

– if # of CPUs > # of hw queues
– if # of CPUs < # of hw queues



MP-safe gif(4)
• Done
– Mutual exclusion between ioctl and packet 

processing

• ToDo
– Lockless packet processing

• with pserialize(9), not rwlock(9)

• with passive reference?

– ip_encap
• Utility functions used by gif(4), stf(4), and ipsec

• Fix scaling problem with lots of tunnels
– Remove linear search in packet processing path (encap[46]

_lookup)



Performance measurements

• We have to know if MP-safe changes improve 
performance

• Throughput and latency of IP and bridge 
forwarding
– Variable sized frames

– Multiple flows

• ipgen is used by the measurements



What is ipgen?

• ipgen: interactive packet generator
– A packet generator utilizing netmap(4) of FreeBSD
– Developed by ryo@

• Features
– Wire rate traffic with short packets on 1 GbE

• Not known for 10 GbE

– Experiments for packet forwarder (DUT)
• RFC 2544 test
• Multiple flows

– Interactive UI (curses and web)
– Drop/dup/reorder counters
– Packet pacing by controlling inter packet gap



PR: demo at IIJ booth



SEIL/BPV4

• Press release (in Japanese)
– http://www.iij.ad.jp/news/pressrelease/2015/0930.

html

• Intel C2558 (Rangeley)
– qat(4): Intel Quick Assist Technology Driver

• Developed by hikaru@
• Uses MSI-X
• Used by opencrypto
• Written from scratch
• Not merged into –current yet

http://www.iij.ad.jp/news/pressrelease/2015/0930.html
http://www.iij.ad.jp/news/pressrelease/2015/0930.html
http://www.iij.ad.jp/news/pressrelease/2015/0930.html


Performance of qat



Roadmap

MP-safe Layer 3 forwarding

Now

MP-safe other network components
(gif, ipsec, opencrypto, ppp{oe}, pfil)

NET_MPSAFE on
by default?

MP-safe Layer 2 (vlan and bpf)

time

• L2 nexthop separation
• MP-safe components

• Coarse-grain locking of the routing table
• Locking (and refcount) of ipaddr
• MP-safe ifnet with pserialize(9)



Future plan

• MP-safe bpf(4)
– Need to make ieee80211_input and some drivers run in 

softint (not must but desired to make MP-safe work easy)

• Alternative to the radix tree
– rttree(3) ?

• Drop rtcache?
– If the routing table is enough fast, we don’t need caches?
– Or introduce a fast cache structure like Poptrie or SAIL?

• A common infrastructure of interfaces
– for polling mode


