
Tricky issues in file systems

Taylor ‘Riastradh’ Campbell
campbell@mumble.net

riastradh@NetBSD.org

EuroBSDcon 2015
Stockholm, Sweden

October 4, 2015



What is a file system?

I Standard Unix concept: hierarchy of directories, regular files,
device nodes, fifos, sockets.

I Unified API: file descriptors.

I Traditionally unified storage: inodes.

I Directories are sometimes ‘different’: contain metadata
pointers.



File system operations

I creat (open)

I unlink

I link

I rename

I mkdir, rmdir

I read, write, fsync

I (mkfifo, symlink, readdir, &c.)



Reliability properties

I ACID
I Atomicity
I Consistency
I Isolation
I Durability

I No transactions: only individual operations.



Atomicity

I Operation either happens all at once, or not at all.

I Crash in middle will not leave half-finished operation.



Atomicity: rename

I rename(old, new) acts as if
I unlink(new)
I link(old, new)
I unlink(old)

I . . . but atomic.



Consistency

I All operations preserve consistent disk state.



Isolation

I If process A does rename:
I unlink("bar")
I link("foo", "bar")
I unlink("foo")

I . . . then process B won’t see two links at foo and bar in the
middle.



Durability

I When the sync program returns, whatever file system
operations you performed will stay on disk.



File system states

I File system has one of three states:
I clean
I dirty
I corrupt (bugs, disk failure, cosmic rays)

I Clean flag in superblock:
I 0 means known clean
I 1 means not known whether clean or dirty (or corrupt)



File system states: fsck

I Traditional: file system operations write metadata
synchronously

I Inode updates, directory entry updates

I Every step preserves consistent state but not necessarily clean
state.

I On boot:
I If marked clean, just mount.
I Otherwise, fsck -p globally analyzes file system to undo

partially completed operations.



File system states: fsck example

I Inode block allocation — need space to append to file:
I Find block in free list.
I Mark block allocated.
I Assign block to inode.

I If crash after block allocated, before block assigned:
I fsck -p scans all inodes
I finds all assigned blocks
I frees unassigned but allocated blocks



File system states: fsck to fix corruption

I fsck (without -p) also tries to fix corrupted file systems

I (Doesn’t always work)



Logging

I Physical block logging:
I Write blocks serially to write-ahead log
I (not synchronously)
I After committed to log, write to disk
I After committed to disk, free space in log
I After crash, replay all committed writes in log

I Faster to recover from crash (but not corruption): replay log
is quick scan, not global analysis

I . . . but isn’t usually quite enough



Logging

I Logical block logging:
I Write logical operations serially to write-ahead log
I After committed to log, perform operations on disk
I After committed to disk, free space in log
I After crash, replay all committed operations in log

I More complex to implement

I But usually necessary at least a little



Physical vs logical

I NetBSD FFS WAPBL, write-ahead physical block logging

I Actually, composite of physical and logical



Physical vs logical: block deallocation

I Deallocate blocks from file, e.g. on rm

I Reuse blocks immediately? No!

I Reallocated block write might happen before log write!

I Logical log entry: deallocate block

I Physical log entry: change inode to not point at block

I When physical log committed, then commit logical log



Reliability assumptions

I Atomic disk sector writes

I Disk write ordering

I Disk write cache



Disk encryption

I Threat model: attacker reads (possibly several) snapshots of
disk (e.g., airport security)

I (Why several? Reallocated disk sectors, especially in SSDs.)
I 1–1 plaintext/ciphertext disk sector mapping

I 512 bytes of plaintext → 512 bytes of ciphertext

I No defence against malicious modification of disk!

I Easy to preserve atomicity of disk sector writes, write
ordering, &c.



Disk authentication

I Threat model: attacker can write malicious data to disk

I Expand each disk block with secret-key MAC?
I 512 bytes of user data → 528 bytes of disk sector?

I Splits file system’s idea of logical disk sector across two
physical disk sectors

I Atomicity? Nope!

I 496 bytes of user data → 512 bytes of disk sector?
I Not nice for file system!



File system authentication

I Rewrite tree of pointers-with-MAC all the way to the root?

I ZFS can do this; FFS, not so much.



Data/metadata write ordering

I Traditional FFS:
I Synchronous metadata writes
I Asynchronous data writes (roughly)

I Typical logging FFS:
I Serial metadata writes
I Asynchronous data writes

I No write ordering between data/metadata!



Garbage data appended after write?

I Allocate free block

I Write data to block (A)

I Write inode to point at new block, increase length (B)

I What if B happens before A?

I What if crash between B and A?

I Now file has whatever data was in free block!



Performance and concurrency

I Coarse-grained locking: easy, slow

I Want per-object locking



Rename

I Four different objects to lock!

I Any pair of them may be the same!

I Need consistent lock order.



Rename: orphaned directory trees

/

/home /usr /var

/home/foo

% mv /home /home/foo/bar



Lock order?

I Traditional in FFS: flail randomly?

I FreeBSD: wait/wound locks, without priorities — livelock!

I ZFS: complicated! (Ask me after. Also broken.)

I Linux and NetBSD: ancestor-first, one rename in flight,
deadlock-free



Suspend

I Need for taking snapshot (unless, e.g., log-structured)

I Need for unmount
I Prevent all operations:

I Block new operations.
I Wait for existing ones to drain.

I In NetBSD: called fstrans.



Suspend: reader/writer lock?

I Can use recursive reader-writer lock: file system operations
take read lock, suspend takes write lock

I Slow! Point of contention for every file system operation.



Suspend: pserialized reader/writer lock

I Better: use passive serialization.

I Reader creates per-thread structure, touches no global state,
unless suspend in progress

I Writer: marks suspend in progress, waits for all per-thread
structures to drain



Questions?

I campbell@mumble.net


